|
|- |bgcolor=#e7dcc3|Cells |28 |1 30px 1 rr 30px 8+12 v 30px |- |bgcolor=#e7dcc3|Faces |82 |40 triangles 42 squares |- |bgcolor=#e7dcc3|Edges |colspan=2|84 |- |bgcolor=#e7dcc3|Vertices |colspan=2|30 |- |bgcolor=#e7dcc3|Dual |colspan=2| |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|(), order 48 |- |bgcolor=#e7dcc3|Properties |colspan=2|convex, regular-faced |} In 4-dimensional geometry, the octahedral cupola is a 4-polytope bounded by one octahedron and a parallel rhombicuboctahedron, connected by 20 triangular prisms, and 6 square pyramids.〔(Convex Segmentochora ) Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 (4.107 octahedron || rhombicuboctahedron)〕 == Related polytopes== The ''octahedral cupola'' can be sliced off from a runcinated 24-cell, on a hyperplane parallel to an octahedral cell. The cupola can be seen in a B2 and B3 Coxeter plane orthogonal projection of the runcinated 24-cell: 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Octahedral cupola」の詳細全文を読む スポンサード リンク
|